

OPTIMUM accuracy trials and volume simulation

Jonathan Heaps - Research Scientist, NPL jonathan.heaps@npl.co.uk Richard James – Technical Fellow (Metrologist), AMRC r.james@amrc.co.uk

Bilbao, Basque region

27th September 2023

Outline

- Introduction to NPL
- What is OPTIMUM
 - Concept
 - Current development status
- Initial testing at AMRC Cymru
 - Setup
 - Results
- OPTIMUM volume simulation
- Next steps

About NPL

- UK's National Metrology Institute founded in 1900
- A public corporation owned by the Department for Science, Innovation and Technology (DSIT)
- Based in Teddington (London) with locations in Strathclyde, Surrey, Cambridge, Huddersfield and Solihull
- Strategic partners DSIT, the University of Surrey and The University of Strathclyde
- 1000 scientists and engineers with a breadth and depth of metrology expertise.

OPTIMUM – high accuracy coordinate metrology using frequency scanning interferometry (FSI) and multilateration

Analogy - The Global Positioning System (GPS)

- 1. Is accurate
- 2. Measures multiple points simultaneously
- 3. Self-calibrating built-in compensation for systematic errors
- 4. Has built-in traceability to SI
- 5. Gives on-line uncertainty estimation

Comparison with state-of-the-art

	Photogrammetry	GPS	OPTIMUM
Basic principle	Triangulation - angles	Multilateration, absolute distance, time-of-flight	Multilateration, absolute distance, FSI
Volume	$<1 \text{ m}^3 \text{ to} > 10^6 \text{ m}^3$	10 ²¹ m ³	$<1 \text{ m}^3 \text{ or } > 500 \text{ m}^3$
Precision	1:10 ⁵ to 1:10 ⁴	0.3:10 ⁶ (~4 m)	~1:10 ⁶ (potentially)
Uncertainty	>1:104	~1:106	~1-5:10 ⁶ (potentially with good geometry)
Traceability	Scale bar	On-board atomic clock	Gas absorption cell built-in
Self-calibration	Camera pose, optical distortion	Receiver clock, real-time	Sensor pose, optical distortion, scale factor, real-time

Current development status

- Sensor hardware operational
 - Some crucial range-noise reduction hardware not yet commissioned
- Bare-bones software functionality in place for testing purposes
- User software in development
 - Already interfaces with SpatialAnalyser
- On-going collaboration with AMRC Cymru on development and testing

Initial accuracy tests at AMRC Cymru

Objective:

To compare accuracy of OPTIMUM in its current configuration with a Laser tracker

Setup:

- Five OPTIMUM sensors placed arbitrarily
- Hexagon AT960-mr
- Hexagon super cat's eye retroreflector
- 1 m Brunson scale bar
- 28 Fixed nests placed arbitrarily in the cell

OPTIMUM setup at AMRC Cymru


```
1. Acquire 50 ranges (d<sub>iik</sub>)
from each sensor (S_i) to each
visible target (T_i).
                        2. Compute mean
                        (d_mean<sub>ii</sub>) and
                        standard deviation (a...
                        after removing outli 3. Use \sigma_{ii} to weight a fit of
                                              d_mean<sub>ii</sub> to the multilateration
                                              model:
                                                    to solve for Sensor and Target
                                              coordinates S_i \& T_i and
                                                                            4. Remove correlated uncertainty
                                              uncertainties u(T_i).
                                                                            contributions from u(T<sub>i</sub>) leaving
                                                                            just the relevant un-correlated
```

Use u*(T_j) to weight a fit of T_j to reference target coordinates,
 R_j measured using the laser

uncertainties $u^*(T_i)$

tracker.
$$T_i \rightarrow T_i^*$$

6. Compute $E_j = R_j - T_j^*$ and $U(T_j) = U(T_j^*) = 2 u^*(T_j)$ and plot.

d_mean_{ij} is the mean of the range measurements between the *i*th sensor and *j*th target.

 $\mathbf{S}_{i} = (x_{i}, y_{i}, z_{i})$ is the coordinates of the ith sensor.

 $T_i = (x_i y_i z_i)$ is the coordinates of the j^{th} target.

e, is a range offset associated with the ith sensor.

 $u(T_i)$ is the estimated uncertainty associated with T_i .

 $u^*(T_i)$ is the un-correlated uncertainty associated with T_i .

 $U(T_i)$ is the expanded (k = 2) un-correlated uncertainty associated with $T_i(T_i^*)$.

 R_i are the reference coordinates of the j^{th} target from the laser tracker.

 T_i^* are the coordinates of the j^{th} target after best fit to R_i .

E_j are the "errors" in the measured coordinates of the jth target.

Test results

standard deviation /mm 0.02

Simulated additional Sensor

Simulated with reduced range noise

Conclusions from initial test results

NPL ©

- Range residuals show a standard deviation of 20 μm.
 - Range noise suppression hardware should improve this in the near future
- Simulated measurement results for 5 sensor setup consistent with observations
 - suggesting the model is a good representation of reality
 - No obvious un-modelled systematic behaviour (within current noise limits)
- Uncertainty achieved depends on the number of sensors deployed and the geometry of the setup.
 - · More sensors better
 - More targets better
 - Better to have sensors all round the measurement volume
- Achieving <100 μm (k = 2) volumetric uncertainty believed to be achievable soon.
- The system tells us what the uncertainty is with confidence
 - See target ID 30 in 3D plot

AMRC Cymru

Introduced to support the region's manufacturing community access advanced technologies to drive improvements in productivity, performance and quality.

Key themes:

- Design
- Automation
- Manufacturing Intelligence

Application:

- Automation
 - Serial arm / gantry robots
 - Large machine tools
- Jigs / fixture
 - Certification
 - Monitoring
 - Re-configuration
- Process monitoring
 - Continuous monitoring of process
 - Alignment of large assemblies
 - Dynamic metrology assisted machining, assembly and automation.

4 sensor network

Line of sight issues

6 sensor network

Next Steps:

- NPL and AMRC Cymru working closely to develop and test the OPTIMUM system
- 'Optimise' sensor positions for future experiments and applications
- Develop simulation capability to include uncertainty estimation
- Test 6 DoF accuracy for automation / robotic applications.

Thank you.

For further information please contact or visit:

jonathan.heaps@npl.co.uk r.james@amrc.co.uk

amrc.co.uk

@the_amrc

