

Alignment for the ESRF Extremely Brilliant Source (EBS)

D. Martin martin@esrf.fr

3DMC – Bilbao 28 September 2023

THE ESRF

The ESRF is a synchrotron radiation light source.

It provides the world's brightest X-rays.

The X-rays are used to unveil the structure of materials and the mechanisms of life down to the atomic scale.

21 partner countries

each year

2000 scientific publications

each year

40 countries

of research carried out with industrial partners

Page 2 3DMC 28/09/2023 - Alignment for the ESRF EBS, D. Martin

When electrons are accelerated they generate synchrotron radiation Synchrotron radiation is light on the electromagnetic spectrum The wavelength of this light is a function of the electron energy The ESRF electron velocity is very close to the speed of light So the wavelength of the light is in the hard X-ray regime

e-

THE ELECTROMAGNETIC SPECTRUM

INFRARED 720-850nm

VISIBLE 440-640nm

ULTRAVIOLET 335-365nm

X-RAY 0.025 nm

The European Synchrotron

ESRF

A synchrotron radiation light source is composed of two main elements:

- A particle accelerator that accelerates electrons e- to nearly the speed of light, and
- Beamlines that use the synchrotron radiation generated by the accelerator to study matter.

General applications of synchrotron radiation at the ESRF

Page 5 3DMC 28/09/2023 - Alignment for the ESRF EBS, D. Martin

The linear accelerator (linac) accelerates the electrons from rest mass to 100 MeV

The booster accelerates the electrons from 100MeV to 6GeV

The storage ring (SR) keeps the electrons circulating at 6GeV for many hours

The 6GeV electrons produce synchrotron radiation in a tangential direction to the e⁻ beam travel

More importantly, special assemblies of magnets called insertion devices (IDs) make the 6GeV electrons oscillate about their orbit, producing very bright and collimated X-rays.

The X-rays are used on the beamlines to study matter.

WHAT IS THE SR ACCELERATOR AND HOW DOES IT WORK?

An accelerator is composed of a repeating array of magnets. The array of magnets is referred to as the lattice. At the ESRF, the lattice comprises 32 cells. Each cell is composed of 4 girders and a total of 49 magnets ...

Different magnets have different functions. Simplistically, for the main magnet families:

- The dipoles change the e- beam direction. •
- The quadrupoles focus the e- beam. ٠
- The sextupoles correct the e- beam.

A good example of the type of science made at the ESRF is crystallography using X-ray diffraction.

A **crystal** is a solid material whose constituent atoms, molecules or ions, are arranged in a **highly ordered microscopic structure**, forming a **lattice** that extends in all directions.

CRYSTALLOGRAPHY AND X-RAY DIFFRACTION

The atoms comprising the crystal structure form planes. When X-rays are incident on these crystal planes they are diffracted and produce a characteristic pattern of spots

BRAGG'S LAW

 $n\lambda = 2dsin\Theta$

Bragg's law provides an elegant and powerful description of diffraction from crystals.

It describes how constructive interference leads to the pattern of X-ray diffraction spots.

Qualitatively, the diffraction picks up a *specific distance* in real-space, and transforms it into a frequency in *reciprocal space*.

ESRF

CRYSTALLOGRAPHY WITH LARGE MOLECULES

The same techniques can be used to image complex systems such as proteins

X-RAY CRYSTALLOGRAPHY METHOD

The European Synchrotron

This technique has led to the discovery of some fantastically complex structures like the ribosome.

METROLOGY IN SYNCHROTRON RADIATION

Where does 3D metrology fit into this?

Typically electrons circulate in the SR for days. New electrons are injected (topped up) every hour*.

All of the time they are circulating, the electrons must stay within a sub-millimetric path. Any disturbance will cause them to oscillate and rapidly be lost.

> *In an 8 hour shift, 6 GeV electrons travel nearly 9 billion km in the ESRF Storage Ring

Machine status

magnet is misaligned

9x10⁹ km IS THE DISTANCE ACROSS THE ORBIT OF NEPTUNE!

The European Synchrotron

There were two key constraints for EBS

first respect the magnet (and other) alignment tolerances

Machine	U(L) [μm]	U(R) [μm]	U(Ζ) [μm]
Long. Varying field dipoles	1000	>100	>100
High gradient quadrupoles, Combined function dipoles	500	60	60
Medium gradient quads	500	100	85
Sextupoles	500	70	50
Octupoles	500	100	100

Maximum permissible error 2.5 o

... and **second** ensure the new machine was in the same place as the old machine to minimize disturbance to the functioning beamlines.

Page 15

Machine	U(L) [μm]	U(R) [μm]	U(Ζ) [μm]
Long. Varying field dipoles	1000	>100	>100
High gradient quadrupoles, Combined function dipoles	500	60	60
Medium gradient quads	500	100	85
Sextupoles	500	70	50
Octupoles	500	100	100

Early on it was decided that these tolerances included all possible errors, and notably:

- Fiducialisation,
- Alignment on the girder including:
 - o opening and closing of magnets,
 - o girder rectitude,
- Transportation,
- Alignment in the tunnel,
- ...

It was also decided the most appropriate way to determine the overall uncertainty was to follow the methodology for an uncertainty calculation outlined in the Guide to the Uncertainty in Measurement – the GUM*.

*available at https://www.bipm.org/en/publications/guides/gum.html

measurement uncertainty

non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information

 $U = \sqrt{Type A^2 + Type B^2}$

An uncertainty calculation is generally done in a characteristic manner

For a magnet, we are interested in putting the magnet axis in the right place

But we cannot see the magnet axis

So we have to reference it with respect to something we can see.

The magnet reference points were determined from two laser tracker stations.

The European Synchrotron

FIDUCIALISATION UNCERTAINTY

	U(L) [μm]	U(R) [μm]	U(Ζ)¹ [μm]	U(Z)² [μm]
Laser Tracker				
Wire position	13	15	18	18
Measurement	9	10	9	9
Repeatability	3	3	12	12
Magnet measurements		4	4	4
Magnetic Fiducialisation		20	20	20
Magnet Shim Determination				20
Total	16	26	31	37

Shims were used to align certain magnets:1) High gradient quadrupoles, Combined function dipoles2) Medium gradient quadrupoles, sextupoles and octupoles

We combine all of these errors/uncertainties to determine the fiducialisation uncertainty contribution.

This is the first of several contributions to the overall alignment uncertainty...

Reference: G. Le Bec, J. Chavanne, L. Lefebvre, D. Martin, and C. Penel, "Magnetic Measurements and Fiducialisation of the ESRF-EBS Magnets", in Proc. 11th Int. Particle Accelerator Conf. (IPAC'20), Caen, France, May 2020, paper THVIR09, pp. XX-XX

Assembly was made at ESRF01 - a dedicated building

GIRDER ALIGNMENT UNCERTAINTY

Weight Instrument (check i	f moving)	Weight	Point	Ma	Ra	Ux	Uy	Uz	Umag	Meas	^
1.000 0: SA A::0 - Leica e	mScon AT403	1.000	DL2B 3 E	0.032	121%	0.007	0.008	0.008	0.013	01 345	
- 1.000 1: SA B::0 - Leica e	mScon AT403	1.000	QF6B SI	0.025	104%	0.006	0.007	0.007	0.012	01 3456	
1.000 2: SA C::0 - Leica e	mScon AT403	1.000	QF6B EI	0.028	101%	0.006	0.007	0.007	0.012	01 3456	
1.000 3: SA D::0 - Leica e	mScon AT 403	1.000	DL2B_2_E	0.021	98%	0.008	0.008	0.009	0.014	01_345_	
1.000 4: SA E::0 - Leica e	mScon AT 403	1.000	DL2B_3_S	0.027	95%	0.007	0.008	0.008	0.013	01_345_	
1.000 5: SA F::0 - Leica e	mScon AT 403	1.000	SD1B_EI	0.032	95%	0.008	0.009	0.009	0.015	01_345_	
1.000 6: SA G::0 - Leica e	mScon AT 403	1.000	DL2B_4_E	0.024	93%	0.007	0.008	0.008	0.013	01_345_	
	_	1.000	QF8B_SI	0.021	89%	0.007	0.009	0.008	0.014	01_3456	
strument Solution Reference	Frame	1.000	SD1B_SE	0.027	88%	0.008	0.009	0.008	0.015	01_345_	
Instrument Frame) Working Frame	1.000	QF8B_EE	0.031	88%	0.008	0.009	0.007	0.014	01_3456	
use Calue Tria Oralism and	De Calue	1.000	CH6-BPM04-P2	0.023	87%	0.009	0.011	0.010	0.018	45_	
kuto solive, mini o utilers, and	ne-sulve	1.000	DL2B_1_E	0.025	85%	0.009	0.009	0.009	0.016	_1_345_	
Auto Solve	Do this automatically	1.000	DL2B_1_S	0.029	85%	0.008	0.009	0.009	0.015	0345_	
		1.000	DL2B_5_E	0.027	81%	0.007	0.007	0.007	0.013	01_345_	
Best-Fit Unly	Instrument Settings	1.000	DL2B_4_S	0.021	81%	0.007	0.007	0.007	0.012	01_345_	
Best-Fit then Solve	Trim Outliers	1.000	DQ1B_SE	0.020	78%	0.009	0.011	0.009	0.016	3456	
Salua	Euclude Manauromonte	1.000	DQ1B_EE	0.020	75%	0.007	0.009	0.008	0.014	0345_	
SUIVE	Exclude measurements	1.000	G128-SI08	0.020	72%	0.008	0.009	0.009	0.016	3456	
Incertainty Field Analysis		1.000	QF6B_SE	0.017	72%	0.006	0.007	0.007	0.012	01_3456	
Begin Samp	iles: 300	1.000	QD58_SI	0.023	71%	0.008	0.009	0.008	0.014	01_345_	
		1.000	G128-SE07	0.022	70%	0.010	0.010	0.011	0.018	012	
⊠ ime∟	mic 4.0 min.	1.000	QF8B_SE	0.022	69%	0.008	0.009	0.008	0.014	01_3456	
Reporting	0.5	1.000	QF8B_EI	0.020	68%	0.008	0.009	0.007	0.014	01_3456	
	Error	1.000	QF6B_EE	0.018	67%	0.007	0.007	0.007	0.012	01_3456	
e 🐑 🏪	 Uncertainty 	1.000	QD5B_EI	0.016	65%	0.008	0.009	0.008	0.014	01_345_	
Instrument I Incertainty Ana	lusis CoVar	1.000	SD1B_SI	0.021	65%	0.009	0.009	0.009	0.016	01_345_	
		1.000	QD5B_SE	0.014	65%	0.008	0.009	0.009	0.015	01_345_	
µpply Results ✓ Create composite group: ✓ Create point u Update compo ✓ Apply instrument and poin	USMN Composite ncertainty fields isite point offsets t group transforms in SA	No scale ba Summary Point Erro System So	rs defined. r: Overall RMS = plution Time: 0.3 :	0.009, A sec, Rol	verage = I bustness F	0.007, Max : Factor = 0.00	= 0.032 'SD1)2318, Unki	IB_EI' nowns 24, E	quations i	Scale B	ars
De-Activate measurement	s weighted to zero	Uncertain	ty Magnitude: Av	erage =	0.016, Ma	ax = 0.023 'C	H5-1'				
		68.26% C	onfidence Interva	l (1.0 sig	ma), Samp	oles: 300, W	CF: GNet:G	iref			
Apply	Cancel	Uncertain	tu Analusis Time:	39.8							

	U(L) [μm]	U(R) [μm]	U(Ζ) ¹⁾ [μm]	U(Ζ) ²⁾ [μm]
Measurements	6	7	6	6
Difference to nominal	126	24	25	25
Overall uncertainty		14	17	17
Magnet Opening/Closing	8	5	7	7
Girder rectitude				8
Total	126	29	31	31

Shims were used to align certain magnets:

1) High gradient quadrupoles, Combined function dipoles

2) Medium gradient quadrupoles, sextupoles and octupoles

After the installation and initial alignment in the tunnel all of the girders were remeasured like they were during in ESRF01. This was done again after the bakeout was finished in the tunnel.

The magnet positions were then adjusted onto the magnet positions measured at ESRF01.

Survey	U(R) [μm]	U(Ζ) [μm]
ESRF01 (see girder alignment uncertainty)	14	17
After transport (3D adjustment on ESRF01)	17	20
After bakeout (3D adjustment on ESRF01)	19	21

These results suggest the effect of transport was $\sim 10 \ \mu m$ – and the effect of bakeout on the alignment less than that ...

ESRF01 was the building where the girders were assembled.

NOVEMBER 2019 AFTER FINAL ALIGNMENT

srNov19after dR (St Dev = 0.84 mm)

srNov19after dZ (St Dev = 1.03 mm)

NOVEMBER 2019 AFTER FINAL ALIGNMENT - ERROR

srNov19after Position (St Dev = 0.039 mm)

	U(R) [μm]	U(Ζ) [μm]
G1E, G4S	52	42
G1S, G2E, G3S, G4E	42	34
G2S, G3E	24	32
DQ2	23	30

 U_R =39 um U_Z =36 um

Combined alignment uncertainties for the EBS machine using the U_R and U_Z from the previous slides are estimated to be:

	Magnet type	Nominal U(R) [μm]	Measured U(R) [μm]	Nominal U(Ζ) [μm]	Measured U(Z) [μm]
QF1A	Med. Grad. Quad.	100	66	85	65
QD2A	Med. grad. quad.	100	40	85	49
QD3A	Med. Grad. Quad.	100	40	85	49
SD1A	Sextupole	70	40	50	49
QF4A	Med. Grad. Quad.	100	40	85	49
SF2A	Sextupole	70	40	50	49
QF4B	Med. Grad. Quad.	100	40	85	49
OF1B	Octupole	100	58	100	60
SD1B	Sextupole	70	58	50	60
QD3A	Med. Grad. Quad.	100	40	85	49
QF6B	High Grad. Quad.	60	40	60	45
DQ1B	Dipole-Quadrupole	60	40	60	45
QF8B	High Grad. Quad.	60	47	60	55
DQ2C	Dipole-Quadrupole	60	46	60	54
Symmetric					

Note U(L) along the beam = 453 μ m for a nominal value of 500m

ALIGNMENT UNCERTAINTY BY MAGNET

The constraint was to align the beamline source points and directions as they were in the old machine. The beamline direction is determined by the magnet positions on either side of the source point.

Recall the second major constraint – put the machine back where the old machine was...

RMS R	RMS Z	RMS Direction
[mm]	[mm]	[urad]
0.32	0.22	8

ID16

Machine simulations estimate the alignment uncertainties to be less than these values. The SR alignment estimates were:

 rms quadrupole horizo 	ntal orbit \rightarrow 22 to 42 μ m
---	---

• rms quadrupole vertical orbit \rightarrow 22 to 53 μ m

P. Raimondi, et al., "Commissioning of the Hybrid Multi-Bend Achromat lattice at the European Synchrotron Radiation Facility" Phys. Rev. Accel. Beams 24, 110701 – Published 1 November 2021

Our estimates for alignment uncertainties are:

Medium gradient magnets

- U(R) = 40 to 66 um for a nominal value of 100 um
- U(Z) = 49 to 69 um for a nominal value of 85 um

Sextupole magnets

- U(R) = 40 to 58 um for a nominal value of 70 um
- U(Z) = 49 to 60 um for a nominal value of 50 um

High gradient and combined function magnets

- U(R) = 40 to 47 um for a nominal value of 60 um
- U(Z) = 45 to 54 um for a nominal value of 60 um

Finally, the beamline source points were within 0.3 mm and 8 urad of their nominal positions.

Old SR 26 November 2018

EBS 30 January 2020

...The EBS X-ray beam at distances varying from 45 to 160m was found within fractions of millimetres from its position in December 2018...

E-mail Francesco Sette to all staff on 31/01/2020

The European Synchrotron

Thank you for your attention...

Page 33 3DMC 28/09/2023 - Alignment for the ESRF EBS, D. Martin