

Identifying the gaps in the standards use to quantify large volume metrology (LVM) systems performance for industrial robot applications

Claire Pottier, Sam Johnston, David Gorman

National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK claire.pottier@npl.co.uk

External 6DOF systems can enhance flexibility of automation

Robots are used in industry because of their¹:

High repeatability.

However they also have low absolute accuracy thereby hindering their operational flexibility, and limiting their uses to repetitive tasks¹.

Why using external 6DOF system in industry²:

Advantages³:

- To improve positional accuracy.
- To enhance in-process control.
- To increased operational flexibility.

The latest multi-target, multi-nodal 6DOF systems overcome line of sight limitations through the integration of multiple measurement nodes.

To flexibly track robots, parts and fixtures over a large working volume.

Do current standards quantify the performance of complex multi-nodal systems?

Performance Quantification \rightarrow **Standards**

	ASTM E3064-16	ASTM E2919-14	ASME B89.4.19	ISO 10360-10	VDI/VDE 2617 Parts 1-3
Aim	Evaluation of the performance of optical tracking systems that measure 6DOF pose	Measuring the 6DOF pose of a rigid object	Performance evaluation of laser-based spherical CMM	Verification of the performance of a laser tracker	Practical acceptance and reverification methods for the evaluation
System tested	Optical tracking system	All systems	Laser	Laser	Optical 3D measuring imaging
Artefact	Ball bar 300 mm length	Any measurable rigid objects	Length bar with SMR/ SRC/ODR*	Spheres/ SMR/ SRC/ ODR/ length bar	Gauge blocks, spheres, planes
Tests	Dynamic volumetric measurements	Measure poses for N > 32 poses + comparison to a Ref Sys	Point-to-point/ Two face test/ Ranging tests + comparison to a Ref Sys	Probing and form test/ Two face test/ Length test	Point-by-point/ single and multiple view for probing, sphere-spacing and flatness tests
Measurands	Position (relative) Orientation (relative)	Position and Orientation + pose errors (absolute and relative)	Length (absolute) Target coordinate measurements	Length (absolute) Sphere diameter (absolute) Target coordinate Size and form errors	Length (absolute) Sphere diameter (absolute) Plane form (absolute)
Static/ Dynamic	Dynamic (at constant speed)	Static	Static	Static	Static

Gaps:

- , current standard do not lly characterise multi-nodal, ulti-target LVM 6DOF chnologies.
- consistent definition of iteria used to measure the erformance of the system der test.
 - **Requirement for concurrent**
 - No universally applicable test methodology suitable for all 6DOF technologies.

ck of dynamic test that is rors introduced by the

Addressing the Gaps

An approach has been taken to adapt existing methods described in current standards to include dynamic (speed, velocity) measurement in a series of scalable, volumetric tests. These tests are not reliant on concurrent measurement of a reference system and will accommodate multiple LVM technologies.

Elements of the test include a rotating calibrated length gauge, interchangeable target constellations, integrated environmental sensors, and the option to include an external reference system. Additionally, the tests can be arrayed throughout a volume to provide volumetric data. The test measurands are the absolute and relative pose of the constellations and their velocities.

References

- R. Grassmann, V. Modes and J. Burgner-Kahrs, "Learning the Forward and Inverse Kinematics of a 6-DOF Concentric Tube Continuum Robot in SE[3]," 2018 IEEE/RSI International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 5125-5132, doi: 10.1109/IROS.2018.8594451.
 Pi, Stand Wang, X., 2011. Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances. Control Engineering Practice, 19(2), pp.185-193.
- ler, C., Schmidt, H.C., Koch, P., Boehlmann, C., Kothe, S., Wollnack, J. and Hintze, W., Real time pose control of an industrial robotic system for machining of large scale sonents in aerospace industry using laser tracker system. SAE International journal of 2017, Real t ce, 10(2), pp.100-108.

www.npl.co.uk